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1 Theory

A Linear Feedback Shift Register is a digital circuit or algorithm used to
generate pseudorandom sequences of binary digits (bits). It is a shift register
with feedback logic that produces a sequence of bits based on the current
contents of the register and a predefined feedback polynomial. LFSRs are
widely used in various applications, including cryptography, pseudorandom
number generation, error detection and correction, digital signal processing,
and more.

1.1 Structure

An LFSR comprises the following key components:

• Shift Register: A sequence of flip-flops, typically implemented using
D-type or JK-type flip-flops, connected in series. Each flip-flop stores
a single binary digit (bit).

• Feedback Logic: The feedback logic consists of XOR gates that com-
bine specific bits from the shift register based on a feedback polynomial.
This logic generates the new bit to enter the leftmost (or rightmost)
flip-flop during each clock cycle.

• Feedback Polynomial: The feedback polynomial is a binary poly-
nomial represented by its coefficients, which are either 0 or 1. The
polynomial dictates the connections of the XOR gates in the feedback
logic.

1.1.1 Feedback Polynomial

The feedback polynomial determines the arrangement of XOR gates and the
taps (points from which bits are extracted) in the shift register. The taps
are selected based on the non-zero coefficients of the feedback polynomial.

For example, if the feedback polynomial is x4+x3+1, the taps are usually
located at the fourth and third flip-flops from the right. The XOR of the
bit values at these taps, along with the XOR of other taps as defined by the
polynomial, forms the feedback value.
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1.2 Characteristics and Properties

• Periodicity: LFSRs generate pseudorandom sequences with a maxi-
mum period that depends on the number of bits in the shift register
and the chosen feedback polynomial. The period is the number of clock
cycles before the sequence repeats.

• Linearity: LFSRs are linear systems due to the XOR operations in-
volved in the feedback logic.

• Auto-Correlation: Autocorrelation is a fundamental property of sig-
nals and sequences that describes the similarity between a signal and a
delayed version of itself. In the context of Maximal Length Sequences
(MLS), which are generated by Linear Feedback Shift Registers with
specific properties, autocorrelation plays a significant role in various
applications, particularly in fields like cryptography, communication
systems, and signal processing. Autocorrelation measures the similar-
ity between a signal and a delayed version of itself. Mathematically,
the autocorrelation of a discrete signal or sequence x[n] at a time offset
k is given by:

Rx[k] =
∑
n

x[n] ∗ x[n− k] (1)

In the context of MLS, the autocorrelation function indicates how well
a sequence matches with its delayed version, and it plays a crucial role
in various practical applications. The autocorrelation (M) of an MLS
is always calculated as follows:

M = 2n − 1 (2)

Where ”n” is the number of logical stages within the Linear Feedback
Shift Register.

Maximal Length Sequences (MLS)MLS are binary sequences gen-
erated by LFSRs with feedback polynomials that result in a maximum-
length cycle before repetition. These sequences have desirable proper-
ties, including:

– Long period before repetition.
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– Balanced distribution of 1s and 0s.

– Low cross-correlation with shifted versions of themselves.

Importance of Autocorrelation in MLS

– Cryptography: In cryptographic applications, MLS with low auto-
correlation are preferred. Low autocorrelation minimizes the like-
lihood of patterns in the sequence, making the MLS more suitable
for use as pseudorandom keys in encryption algorithms.

– Spread Spectrum Communication: Autocorrelation properties are
crucial in spread spectrum communication, where MLS are used
for spreading signals over a wide bandwidth. Low autocorrelation
helps minimize interference and enhances signal detection.

– Radar and Sonar: In radar and sonar systems, MLS with desirable
autocorrelation properties are used for generating probing signals
with good range resolution.

Autocorrelation Function Characteristics

The autocorrelation function of a maximal length sequence has some
distinctive properties:

– Peak at Zero Delay: The autocorrelation function has a sharp
peak at zero time delay, indicating that the MLS is very similar
to itself without any delay.

– Low Sidelobes: The sidelobes (peaks away from zero delay) of
the autocorrelation function are very small, indicating that the
sequence has minimal correlation with its shifted versions.

– Dirac Comb Structure: The autocorrelation function resembles a
Dirac comb structure, with impulses at integer multiples of the
sequence length. This is a result of the maximal length property.

Cross-Correlation and Autocorrelation

MLS not only have low autocorrelation but also low cross-correlation
with shifted versions of themselves. This property is essential in ap-
plications where multiple sequences need to be distinguishable, as in
code-division multiple access (CDMA) communication systems.
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2 Implementation

When implementing LFSRs in microcontrollers, the following considera-
tions apply:

• Choosing Register Length: Select the register length based on the de-
sired sequence length and available resources. Longer registers yield
longer pseudorandom sequences but require more processing time.

• Clock Speed and Timing: LFSRs require a clock signal to operate.
Ensure the clock speed and timing are appropriate for your application.

• Initialization: Initialize the LFSR with a nonzero seed value to avoid
non-random outputs.

• Output Generation: Choose an appropriate tap for output generation,
considering the desired characteristics of the pseudorandom sequence.

• Connecting to Other Components: LFSRs can be integrated with other
microcontroller components to achieve specific functionality.
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2.1 Common Structures

2.1.1 Fibonacci LFSR

Figure 1: Fibonacci LFSR with combined XOR feedback. Source: Wikipedia

Feedback Polynomial

• In Fibonacci LFSRs, the feedback polynomial is typically chosen with
fewer taps, which may lead to shorter periods compared to other LFSR
structures. The selection of taps is often more straightforward, making
these LFSRs easier to design and implement.

Characteristics

• Ease of Implementation: Fibonacci LFSRs can be simpler to design and
implement due to the reduced number of taps in the feedback polyno-
mial. This structure is particularly useful when precise and timely code
execution is required.

• Reduced Hardware Complexity: The simplicity of Fibonacci LFSRs
may lead to lower hardware complexity and reduced power consump-
tion.

Applications

• Error Detection and Correction: Fibonacci LFSRs are used in error-
detection codes like CRC (Cyclic Redundancy Check), where shorter
periods are sufficient for checking data integrity.

• Digital Signal Processing: Fibonacci LFSRs find applications in signal
processing tasks like signal modulation and generation of pseudoran-
dom sequences for spread spectrum communication.
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2.1.2 Gaussian LFSR

Figure 2: Gaussian LFSR with state sequential XOR feedback. Source:
Wikipedia

Feedback Polynomial

• In Gaussian LFSRs, the feedback polynomial is chosen in a way that
maximizes the length of the LFSR’s period, resulting in a longer pseu-
dorandom sequence before repetition occurs. This polynomial is often
selected from a set of primitive polynomials over a finite field, such as
Galois fields.

Characteristics

• Longer Periods: Gaussian LFSRs tend to produce longer pseudoran-
dom sequences before cycling back to the initial state. This property
is particularly useful in applications requiring extended sequences with
minimal repetition.

Applications

• Cryptography: Gaussian LFSRs are used in stream ciphers where longer
periods enhance security by reducing the predictability of the pseudo-
random keystream.

• Random Number Generation: For applications demanding high-quality
random numbers, Gaussian LFSRs can provide longer sequences before
exhibiting repetition.
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